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Abstract. Energy harvesting (EH) is a multidisciplinary research area, involving

physics, materials science and engineering, with the objective of providing renewable

sources of power sufficient to operate targeted low-power applications. Piezoelectric

transducers are often used for inertial vibrational as well as direct-excitation EH.

However, due to the stiffness of the most common material (PZT), compact and light-

weight harvesters have high resonant frequencies, making them inefficient at extracting

low frequency power from the environment. The technique of frequency up-conversion,

in the form of either plucking or impulse excitation, aims to bridge this frequency gap.

In this paper, the technique is modelled analytically with focus on impulse excitation

via impact or shock. An analytical model is developed in a standard way starting

from the Euler-Bernoulli beam equations adapted to a piezoelectric bimorph. A set of

dimensionless variables and parameters is defined and a system of differential equations

derived. Here the system is solved numerically for a wide range of the two group

parameters present, covering piezoelectric coupling strength between PVDF and PMN-

PT. One major result is that the strength of the coupling strongly affects the time-scale

of the process, but has only a minor effect on the total energy converted. The model

can be readily adapted to different excitation profiles.

Keywords: Energy Harvesting, impact excitation, impulse excitation, frequency up-

conversion, piezoelectric bimorph, dimensionless model.
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1. Introduction

Energy harvesting (EH) has been a hot topic in recent years, attracting interest

from mechanical, electronic and systems engineers, businesses, material scientists and

physicists. With the purpose of scavenging energy from the environment for the most

diverse range of applications (sensing, monitoring, automation, healthcare, . . . ) a host

of physical phenomena are investigated and exploited.

The high stiffness of piezoelectric ceramics such as PZT (the most commonly used

piezoelectric material) causes difficulties in the design of EHs efficiently tuned to the

environment, where the vibration spectrum has typically lower power content at high

frequencies. For this reason, the piezoelectric transducer normally favoured in EH is

the PZT bimorph in a cantilevered beam configuration, often with a tip mass to further

reduce the resonance frequency. A drawback is that the high fundamental frequency

intrinsic to piezoelectric transducers is sacrificed, even though it is always desirable

as higher frequencies mean the potential of higher power generation. The frequency

mismatch issue is even more severe within the scope of human-based energy harvesting,

given that human motions are intrinsically slow.

It is therefore clear the need for a technique capable of bridging between the

high-frequency response of piezoelectric bimorphs and the low-frequency input that is

most often available in the environment and on the human body. This up-frequency

conversion can be achieved in two distinct ways. The plucking or “pizzicato” technique

[1, 2] is based on elastically deforming the bimorph with a plectrum and permitting

free vibrations upon release; in the latter phase, the stored elastic energy is converted

into electrical energy. The other embodiment of frequency up-conversion is impulse

excitation [3], where momentum is transferred to the bimorph, usually via impact

with a projectile. It is worthwhile to compare and contrast these two techniques. In

plucking excitation, the piezoelectric devices are slowly deformed and then released;

mathematically, the system’s initial conditions feature a non-zero displacement; the

principle is equivalent to the plucking of chords in a guitar (or a violin when the pizzicato

technique is used). From the physical point of view, impact involves the transfer of

momentum; mathematically, the system’s initial conditions have non-zero velocity; the

principle is similar to hammers striking the wires in a piano.

Frequency up-conversion techniques have been applied to situations where

environmental vibrations are at much lower frequency than the transducers’ natural

frequency. For example, Kulah and Najafi, [4] have developed a micro-scale

electromagnetic harvester where the low-frequency vibration of a suspended magnet

excites the high frequency vibration of a number of coil-carrying cantilevers placed

around it. Frequency up-conversion techniques can also be applied to scavenge energy

from slow rotary motions [5, 6], from oceanic waves [7] and to wearable energy harvesters

[8]. Some examples of impact excitation are a hand-held device by Renaud et al. [9] and

a smaller device by Cavallier et al. [10]; more recently other authors have applied the

technique in the microscale with piezoelectric [11] and electrostatic transduction [12].
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Gu and Livermore [13] presented a self-tuning EH that produces periodic impacts on a

piezoelectric beam when installed on a disc rotating in a vertical plane; the work also

offers basic modelling for the optimisation of some design parameters.

Although the principle behind the impulse technique of frequency up-conversion is

rather simple, it is important to model the process to understand its potential and its

dominating features as an energy harvesting technique, to select the most appropriate

piezoelectric material and to establish the effects of different types of impact. In the

design of an impulse excited EH it is also important to determine the optimal impact

frequency: a dynamic, time-dependent description of the cantilever’s movement permits

to decide when sufficient energy has been extracted from that event and it is more

beneficial to produce a new impact rather than wait for a full conversion of the imparted

energy. A detailed modelling of impact-excitation has been presented by Jacquelin et

al. [14] and applied to the device prototyped by Renaud et al. [9]. Renaud’s harvester

features two piezoelectric monomorphs excited by impacts of a sliding mass which travels

between the two when the whole device is vigorously shaken side to side. Jacquelin’s

model describes the explicit dynamics of the impact, including Hertzian contact forces,

the motion of the mass and the vibration of the beam. Jacquelin studied the effect

of some individual parameters on the average power produced with a fixed external

excitation.

The present paper differs from and complements Jacquelin’s work, as focus is on

the transducer itself and the role played by the piezoelectric coupling and the external

resistor. Whereas Jacquelin et al. applied their method to a specific harvester and

optimised its design parameters, here we try to draw as widely applicable conclusions as

possible – for instance, the beam’s size remains unspecified as the model is dimensionless.

The optimisation of the impact conditions (mass and velocity of projectile, hardness of

the contacting surfaces, etc.) is a very complex problem, in part addressed by Jacquelin.

In the present paper, there is no attempt to investigate the details of the impact itself,

rather it is assumed that the contact force versus time is approximated by a bell-shaped

curve (specifically, a Gaussian), which is a good approximation even when the impact

conditions vary significantly, for example going from simple impact to multiple impacts

[15]. The present work offers guidelines to the design of efficient and cost effective

impulse-excited EHs that can be immediately applied in their qualitative content and

whose quantitative benefits can be calculated once the dimensionless results presented

are particularised for the problem in hand.

2. Dimensionless model

In this section, the classical treatment of a vibrating clamped-free beam is adapted to a

piezoelectric bimorph; for more details on the Euler-Bernoulli beam-related derivations,

the reader is referred to a book on vibrations such as [16]. More details on the derivations

for a piezoelectric beam can be found in [17].

Indicating with the attribute tilde (˜) variables and parameters which have
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dimensions, the governing differential equation of a piezoelectrically active Euler-

Bernoulli beam (figure 1) is:

∂2M̃mech

∂x̃2
+
∂2M̃el

∂x̃2
+ c̃a

∂ũ

∂t̃
+ ρ̃w̃h̃

∂2ũ

∂t̃2
= f̃(x̃, t̃) (1)

where c̃a is the coefficient of viscous damping (e.g. air damping), ρ̃ is the average

volumetric mass density, h̃ is the total thickness of the beam, w̃ is its width and f̃(x̃, t̃)

is an external forcing function. The definition of coordinates and other geometrical

parameters used later are indicated in figure 1. As indicated in (1), the bending moment

is made of two terms, of mechanical and electrical origin respectively. The mechanical

term is simply given by:

M̃mech = B̃
∂2ũ

∂x̃2
(2)

Considering the sandwich-like structure, the bending stiffness can be written:

B̃ = 2Ỹpz Ĩpz + ỸmsĨms = Ỹpzw̃h̃
3

[
h3r
6

+
(1− hr)2hr

2
+
Ỹms

Ỹpz

(1− 2hr)
3

12

]
here the pz and ms subscripts stand for piezoelectric layer(s) and internal metal

substrate, respectively; Y is the Young’s modulus in the x or y direction, which are

equivalent for a piezoelectric ceramic poled along the z axis; Ĩ is the second moment of

an area; w̃ is the width of the bimorph; h̃ = 2h̃pz + h̃ms and hr
def
= h̃pz/h̃.

At this point, it is convenient to introduce the parameter cB , which contains the

elastic and geometrical properties of the bimorph:

cB
def
=

B̃

Ỹpzw̃h̃3
=
h3r
6

+
(1− hr)2hr

2
+
Ỹms

Ỹpz

(1− 2hr)
3

12
(3)

so that (2) can be re-written:

M̃mech = cB Ỹpz w̃ h̃
3 ∂

2ũ

∂x̃2
(4)

The inverse piezoelectric effect introduces a bending moment of electrical origin. This

can be derived from the constitutive equation of piezoelectricity S1 = sE11T1 +d31E3 that

takes this form because of the position of the electrodes (E1 = E2 = 0) and the geometry

of the beam, which permits to neglect all stresses except the longitudinal tensile [18].

This equation can be manipulated to give the stress T as a function of the applied

electric field E and the strain S (the dependence on spatial and temporal coordinates

is omitted for compactness):

T1 = YpzS1 − d31YpzE3 (5)

Ignoring its first term as it is already taken care of by (2), the second term gives:
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M̃el = 2

∫
T̃ z̃ dã = 2

∫ h̃/2

h̃ms/2

d̃31Ỹpz
Ṽ

2h̃pz
z̃(w̃dz̃) =

1

2
d̃31Ỹpzw̃h̃(1− hr)Ṽ (6)

where we have used the relationship between electric field and voltage Ẽ3 = −Ṽ /(2h̃pz),
which assumes a series bimorph.

Combining equations (1), (4) and (6), the governing equation for a piezoelectrically

active beam can be written as:

cBỸpzw̃h̃
3∂

4ũ

∂x̃4
+

1

2
d̃31Ỹpzw̃h̃(1− hr)

∂2Ṽ

∂x̃2
+ c̃a

∂ũ

∂t̃
+ ρ̃w̃h̃

∂2ũ

∂t̃2
= f̃(x̃, t̃) (7)

In order to derive the corresponding dimensionless equation, a new set of

dimensionless variables is needed (see Table 1). These definitions are developed with

reference to [19], adapted and extended to include the electrical quantities. After some

manipulations, the equation becomes:

1

k41

∂4u

∂x4
+ 2ζ

∂u

∂t
+ χ

∂2V

∂x2
+
∂2u

∂t2
= g(x, t) (8)

where two new dimensionless coefficients are defined:

ζ
def
=

ω̃1L̃
4

2k41B̃
c̃a χ

def
=

(1− hr)
2cBk41h

2

the following relation is also introduced (see e.g. [19]):

ω̃2
1 =

k41cBỸpzh̃
2

ρ̃L̃4

and the dimensionless forcing is:

g(x, t) =
f̃(x̃, t̃)L̃3

k41B̃
.

Note that in the equations above, k1 is the first solution to the frequency equation

1 + cos k cosh k = 0, which applies when the boundary conditions for a cantilevered

beam are imposed [16].

Within the scope of this paper, the forcing function g(x, t) must represent a

low velocity impact excitation. The exact time-dependence of the force between two

impacting bodies depends upon their shape, the materials they are made of, their

masses, the relative velocities, their constraints, etc. As this paper is devoted to a

generic impact of a cantilevered beam with an almost free projectile, it is sufficient to

select a function with these main features: zero before and after contact, sharp rise up

to a maximum, corresponding to maximum approach, and subsequent sharp decrease.

A common function satisfying these requirements is the Gaussian:

g(x, t) =
J√
2π σ

exp

[
−(t− t0)2

2σ2

]
δ(x− x0) (9)
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Table 1. Dimensionless variables and parameters (expanded from [19])

Symbol Description Relation

L,w, h length, width, thickness õ = L̃o

u displacement ũ = L̃u

t time t̃ = t/ω̃1

ρ volumetric mass density ρ̃ = ρB̃/(L̃6 ω̃2)

V voltage Ṽ = V L̃/d̃31

governed by the following parameters:

J dimensionless impulse transferred during impact;

σ width of the Gaussian – this can be used to study sharp (small σ) or dull impacts

(large σ);

t0 time of maximum approach. It is assumed that the first contact occurs at t0−3σ,

which was set as t = 0 in the following numerical solutions, so that t0 = 3σ.

x0 the point of impact along the beam (using the Dirac δ).

As is well known, when a piezoelectric material is strained it develops an electrical

charge, as a consequence of a change in polarisation. This is the direct piezoelectric effect

and is still to be included in the model: free charges tend to displace to balance the

change in polarisation, but can do so only via the external circuit, whose resistance

contributes then to determine the strength of the electric field in the piezoelectric

material; this field is connected to the voltage present in (6). So, to take into account

the effect of the electrical circuit, we have to relate the voltage to the current, which is

the time derivative of the charge Q, which in turn is given by the surface integral of the

electric displacement D over the electrode area:

Ĩ(t̃) =
dQ̃(t̃)

dt̃
=

d

dt̃

∫ L̃

0

D̃3(x̃, t̃)w̃ dx̃ (10)

where D3 (the component of the displacement parallel to the poling direction and

giving the charge density on the electrodes) is given by another constitutive equation of

piezoelectricity D3 = d3jTj + εT33E3 , which in this setting becomes:

D̃3(x̃, t̃) = d̃31ỸpzS̃1(x̃, t̃)− εS3
Ṽ (t̃)

2h̃pz
(11)

In (11) the spatial and temporal variables are made explicit: whereas D3 and S1

depend on both, the voltage is uniform on the surfaces of the piezoelectric material

because of the electrodes. Upon substituting (11) into (10), the expression for the

current is:

Ĩ(t̃) = −1

2
d̃31Ỹpzh̃(1− hr)w̃

∣∣∣∣ ∂2ũ∂t̃∂x̃

∣∣∣∣L̃
0

− w̃L̃εS3
2h̃pz

dṼ

dt̃
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Using Ohm’s first law for the current through an external resistor of value R and

introducing the dimensionless variables from Table 1, the direct piezoelectric effect is

described by:

dV

dt
+
V

τ
+ Φ

∣∣∣∣ ∂2u∂t∂x

∣∣∣∣1
0

= 0 (12)

where two new dimensionless parameters are defined:

Φ
def
= k231hrh

2(1− hr)εT33/εS33
τ

def
= εS33R̃wL̃ω̃1/2hrh

(13)

The coupling coefficient has been introduced as k231 = d̃231Ỹpz/ε
T
33 .

The solution of the system formed by equations (12) and (8) proceeds by separation

of variables [17] by setting:

u(x, t) =
∞∑
n=1

φn(x)qn(t)

Note that the φn, which must offer an orthonormal base in the functional space

L2([0, 1]), can be conveniently chosen as is customary for a cantilevered Euler-Bernoulli

beam.

If the approximation includes N modes, the system is:

d2qn
dt2

+ 2ζ

(
kn
k1

)4
dqn
dt

+

(
kn
k1

)4

qn − φ′n(1)χV = g(t)φn(x0)

dV

dt
+
V

τ
+ Φ

N∑
n=1

φ′n(1)
dqn
dt

= 0 n = 1, 2, ..., N

here kn is the nth solution to the already mentioned frequency equation: 1 +

cos k cosh k = 0 ; the φn(x0) multiplier is the result of the internal product of φn with

the Dirac function in g(x, t); the first derivative of the mode shapes in the origin (i.e.

φ′n(0)) has disappeared as it is zero for a beam clamped at the origin.

At this point, it is apparent that a more convenient definition for the dimensionless

voltage would be V̂
def
= V/Φ so that the coupling between the two sets of equations is

gauged by a single dimensionless parameter:

d2qn
dt2

+ 2ζ

(
kn
k1

)4
dqn
dt

+

(
kn
k1

)4

qn − φ′n(1)ΓV̂ = g(t)φn(x0)

dV̂

dt
+
V̂

τ
+

N∑
n=1

φ′n(1)
dqn
dt

= 0 n = 1, 2, ..., N

(14)

with

Γ
def
= Φχ =

1

2k41
· hr(1− hr)

2

cB
· k

2
31ε

T
33

εS33
(15)
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Figure 1. Sketch of the piezoelectric bimorph with relevant dimensions and notations

used in the model.

3. Methodology

3.1. Quality factors and design schemes

In this section some quality factors (QFs) are introduced, which are later used to discuss

the performance of the EH. The first QF is the cumulative (electrical) energy output of

the harvester:

Ec(t) =

∫ t

0

P (t)dt (16)

In this expression, the instantaneous power P is always positive, if a purely resistive

load is assumed, so that Ec is a monotonic function of time. As the vibration dies down,

Ec asymptotically approaches a final value, which will be determined by several factors,

including the efficiency with which the impact excitation is converted into mechanical

energy, the strength of the electro-mechanical coupling and the damping. The latter

two are correlated in the following way: a small coupling implies a long lasting vibration

and hence a large loss due to damping, since a fraction of remaining energy is dissipated

at every cycle.

For practical purposes, the total energy output is the most important QF if impacts

are so sparse that even a slow conversion is complete before the next impact occurs.

However, when impacts can be realized with sufficient frequency, it is equally important

to minimize the time required to produce the energy output. It is therefore useful to

introduce the average power:

Pav(t) =
Ec(t)

t
(17)

and to study its time evolution.

A typical curve of Pav for an impact-excited bimorph (figure 3) is characterized

by a steep initial rise, when a large amount of energy is produced by the very ample

first vibration cycles, followed by a decrease when most of the energy has already been

converted. Between the two regimes is a peak occurring at tmx, which is important to

determine the maximum average power the device can produce: in principle, if impacts

are repeated with the corresponding frequency (1/tmx), the device outputs an average



Impulse excitation of piezoelectric bimorphs for EH 9

power equal to the height of the peak, Pav(tmx). In such operating conditions, a lower

overall efficiency can be expected of the device, corrected by the factor:

η =
Ec(tmx)

Ec(t→∞)

Therefore, there are two main design schemes:

(i) maximize Ec – suitable for sparse impacts;

(ii) maximise Pav(tmx) – suitable for EH that can be designed to produce impacts with

frequency 1/tmx.

In general, scheme 1 will yield higher efficiency but lower average power, whereas scheme

2 will offer the highest average power at the price of reduced efficiency. Operating

conditions and output requirements will dictate which design scheme should be used for

each application.

3.2. Quality factors from model output

When system (14) is solved numerically, a vector V̂ is part of the solution. The purpose

of this section is to relate V̂ to the instantaneous power, from which descend the QFs

introduced in the previous section.

Considering a voltage across a purely resistive load and applying the definitions in

Table 1 and equation (13), the electrical power is given by:

P̃ =
Ṽ 2

R̃
=
L̃3ω̃1ε

S
3w

2hhrd̃231

V 2

τ

and the corresponding dimensionless power is:

P =
P̃ L̃

B̃ω̃1

=
L̃4εS3w

2hhrB̃d̃231

V 2

τ

Finally, using the definition of cB and introducing Γ and V̂ in the previous expression:

P = k41 Γ V̂ 2/τ.

Cumulative energy and average power are derived from this via equations (16) and

(17).

3.3. The space of parameters

The system in (14) contains only three groups of parameters: ζ, τ and Γ.

The dissipative damping (air drag, internal material damping, . . . ) has a minor

effect on the overall behaviour of the vibrating beam, hence it was not explored in

depth. Instead, ζ was set to a fixed value (ζ ≈ 4 10−4), calculated starting from the

mechanical quality factor of a PZT-5H bimorph. In this paper PVDF is treated only
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as a complementary case, but it is worth noting that a piezoelectric polymer will have

higher internal damping.

Numerical solutions were calculated for the dimensionless parameter τ in the set

{log τ = −1.7,−1.3,−1,−0.7,−0.3,−0.1, 0, 0.1, 0.3} recognising that whichever value

yields the optimal performance, it can be realized for practical devices by tuning the

output circuit, a field of research not within the scope of this work.

As for Γ, the second factor in equation (15) ranges from 0 to about 1.7, depending

on the relative stiffness and thickness of piezoelectric material and substrate. This factor

essentially measures the effectiveness of the laminated structure. It can be shown that

for a PZT bimorph it is maximum when the substrate’s stiffness matches the PZT’s and

the three layers have the same thickness.

The last factor is essentially determined by the piezoelectric properties of the

material. The lowest value worth considering here is that for PVDF, for which this

last term is approximately 0.01, as calculated from data in [20]. Currently, the highest

piezoelectric coupling is found in crystalline PMN-PT, for which the last term can reach

9 (from data given in [21] for PMN-29PT). For more commonly used polycristalline PZT

materials, this term ranges between 0.1 and 0.4, as calculated from data given in [22].

Overall, the range of interest for Γ is no larger than between 10−4 and 1 (ΓPV DF ≈
8 10−4 and ΓPMN−29PT ≈ 0.62). Within this range, 21 values were selected uniformly

spaced on a logarithmic scale.

3.4. The Forcing

The excitation (see (9)) depends on three parameters. J was selected as 3 10−3 (as

the model is linear, it is possible to calculate the outcome of different values by simple

rescaling). The point of impact was set at 95% of the length: x0 = 0.95. The sharpness

was set at σ = {0.4, 1, 4}, to represent sharp, medium and extremely slow impacts,

respectively. Recall that the fundamental period of the non-piezoelectric beam is 2π

(see Table 1) whereas the total duration of an impact is approximately 6σ.

4. Numerical results and discussion

The system in (14) was numerically solved including 5 modes (N=5) within Maple

16 using the dsolve command requiring a listprocedure output with the options

maxfun=105 and numeric;according to standard practice, the order of the system was

reduced by defining an accessory set of variables: sn = dqn/dt . As all results reported in

this section are on the dimensionless model, there are no units on any quantity. Solutions

were carried out until time 400, corresponding to over 60 periods. Nonetheless, with

some values of Γ and τ , it was found that at the end of this time, the energy generation

was still significant. Figure 2 identifies the combinations of parameters for which, in the

last 5% of time the cumulative energy increased by more than 3% (a diagram for σ = 4

is not given as energy conversion was always complete). According to the discussion
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Figure 2. Coloured in black, the combinations of parameters for which the energy

Ec(t) increases by more than 3% in the last 5% of time.

Figure 3. Time evolution of cumulative energy, average power, tip displacement and

contact force for two sample runs with σ = 0.4 (left) and σ = 4 (right); in both cases

Γ = 0.1 and τ = 0.5.

above, PVDF has Γ ≈ 8 10−4, so energy conversion is almost complete if the correct τ

is selected.



Impulse excitation of piezoelectric bimorphs for EH 12

Time evolution of tip displacement, instantaneous power and cumulative energy

are reproduced in figure 3 for two sample runs. A sharp impact (σ = 0.4) causes

the vibration of the bimorph, which progressively dies away as energy is converted or

dissipated. If σ = 4, it is hardly possible to speak of an impact excitation, as the

deflection of the bimorph happens synchronously with the forcing and no significant

vibrations are induced. Correspondingly, energy generation occurs in two semi-static

phases: deflection and relaxation, and it is ≈ 350 times lower than in the first case.

These results confirm the advantages of frequency up-conversion, when the bimorph

is excited at its resonance frequency. For σ = 1, the response (not reported here) is

similar to that for σ = 0.4, although with an energy generation ≈ 2.6 times lower. This

suggests that, for moderately sharp impacts, the peak contact force is well correlated to

the energy generated.

With reference to section 3.1, let us first consider results relevant to the choice of

maximising Ec, hence when the EH is designed for sparse impacts. If the impact is

sufficiently sharp, the total energy produced is almost independent on the value of Γ

(first two graphs in first row in figure 4). For each trace, corresponding to a different

value of τ , a maximum is found at intermediate values of Γ.

This discussion suggests that, provided an appropriate τ is selected, any value of Γ

will yield roughly the same energy. However, the time required to complete the energy

conversion is also likely to be important in applications. The time to achieve 97% of

the final energy clearly decreases with increasing Γ (second row in figure 4), with the

highest values of τ in general giving the quickest responses, and values around 1 often

being optimal. Of practical value is the observation that there is an intermediate range

of Γ in which the time drops more quickly, albeit on a semi-log scale.

The quickest conversion for σ = 0.4 was observed for Γ = 0.63 and τ = 0.2. It is

possible to complete 97% of the conversion within time=16, i.e. less than 3 periods,

with Γ > 0.1 and a suitable choice of τ . In the case of σ = 4, conversion is completed

quickly because, as was previously observed, there are almost no residual vibrations of

the bimorph once contact is lost.

A comparative observation of plots in rows 1 and 2 of figure 4 reveals that an optimal

choice of energy may not lead to the fastest conversion and vice versa. Ultimately,

applications designers aim at maximising overall power output. This task is aided by

plots showing the average power generated at the end of the conversion (last row of

figure 4). Overall, power is positively correlated with Γ. For any value of Γ, the power

is maximised by a particular value of τ ; whereas at low Γ a large τ is a fairly safe choice,

at high levels of coupling a non-optimal τ brings significant penalties. This observation

has important consequences in application, as it suggests that the effort spent to increase

Γ (perhaps with expensive piezoelectric materials) can be frustrated by the wrong τ ,

which in practice can be tuned via the impedance of the power extraction circuit.

Let us now consider the second design scheme discussed previously, intended to

maximise the power generated. Interest is in the peak of the curve Pav(t) (ref. figure 3).

Overall, its value is positively correlated with Γ (first row in figure 5). For each value of
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Figure 4. Top�bottom: maximum cumulative energy (value at time=400); time at

which generated energy is 97% of the maximum; average power generated in this time.

Left�right: σ = 0.4; 1; 4. The arrows indicate the direction of increasing τ . In the

first two graphs, points relating to combinations of parameters for which the energy is

still increasing fast are not plotted.

Γ, there is a (decreasing) value of τ which maximises the value of the peak; for σ = 0.4,

an absolute maximum of 2.3 10−5 is recorded for Γ = 1 and τ = 0.1, this is only

33% higher than the maximum power achievable with Γ = 0.1 and τ = 0.5, i.e. with

traditional PZT materials. For each τ , we observe a maximum along Γ, whose cause was

already discussed above. A row-wise comparison re-affirms that the power generated is

higher for shaper impacts, with a loss of up to almost three orders of magnitude when

the “impact” becomes a semi-static deflection.

As discussed previously, the potential power generation presently discussed is

attainable only if impacts are repeated with the appropriate frequency. For sharp

impacts (first two graphs, second row in figure 5) tmx, i.e. the time position of the

peaks in Pav, is negatively correlated with Γ: higher Γ in general yield higher power,



Impulse excitation of piezoelectric bimorphs for EH 14

Figure 5. Top�bottom: the logarithm of the maximum over time of Pav; the position

of said maximum . Left �right: σ = 0.4; 1; 4. The arrows indicate the direction of

increasing τ .

but at the expense of requiring a higher impact frequency. In fact, observing the graphs

column-wise it is noted that the highest power outputs correspond to times of 5 to

6, which means one period. This would not be frequency up-conversion any more, as

the impact excitation occurs at the same frequency as the fundamental mode of the

bimorph.

The step-wise character of the traces in the first two columns is due to the

discretisation of the time occurrence of the maximum, dictated by the oscillatory

response; the exact value depends on Γ as this affects the resonant frequency of the

piezoelectric bimorph. When σ = 4 (last column), tmx is governed by the forcing

function, there are no significant vibrations and Pav(t) has up to two peaks. For low

Γ, the second peak (relaxation) yields more energy; when Γ exceeds a threshold value

(dependent on τ), less energy is produced in the second peak and the first (deflection)

is where maximum power is observed.

The EH may be designed so that impact takes place on a specific location along

the beam. Maximum energy is generated if the impact occurs at the free end (figure 6).

As is visible in the figure, this is also the location where maximum energy is transferred

from projectile to beam. It is also clear that the energy generated is strictly related

to the energy that the projectile is able to deliver. However, the very sharpest impact

(σ = 0.04) excites higher modes to a very large extent and this yields a poorer conversion

efficiency (η0
def
= Eout/Ein) because more energy is lost to internal damping, which

increases with frequency. Furthermore, modes above n = 1 have inflection points, which
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Figure 6. Effect of the impact location on the energy transferred by the projectile

(symbols) and the final energy generated (continuous lines) for σ=0.04, 0.1, 0.4, 1 and

4; for all curves, Γ = 0.1 and τ = 0.5. Coordinate 0 represents the root of the beam,

1 is the free end. Values of σ increase along the arrow.

means that different sections along the beam will generate opposing charges that cannot

be extracted. Despite this, as the piezoelectric effect couples the vibrational modes of

the beam, energy from higher modes will go to the lower mode to be converted. Analysis

of the data in figure 6 relative to σ = 0.04 reveals that the efficiency is 43% and 75% for

impacts at locations 0.2 and 1, respectively; these increase to 81% and 94% for σ = 0.1

in the same locations. In terms of efficiency, location 0.88 results in an optimal choice,

as η0 ≥ 96%, for all impacts considered.

In principle, an improvement in conversion efficiency would derive from the use of

segmented electrodes, as already proposed for vibrational EH by other researchers [23].

The benefit is related to a quicker extraction of energy, and so less time for dissipation

via internal damping. In practical terms, every independent electrode requires, in the

simplest case, a dedicated rectifying bridge, which introduces additional complexity and

a fixed voltage drop, whose effect on efficiency will depend on the scale of the device.

For the sharpest impacts (σ = 0.04 and 0.1) local minima are noticed at 0.72 and

0.66, respectively, and local maxima at 0.52 and 0.54 – although the maxima are only

5% above the minima. A similar result was reported by Jacquelin et al.[14] for their

transient response, which reflects the situation investigated here (in their steady-state

response the maximum is global, likely because at steady-state the location of impact

affects the speed of the projectile).

As is well known, although not always fully appreciated in its consequences,

the stiffness of a piezoelectric material is affected by the external circuit between its

electrodes. In particular, a low external resistance yields a more compliant bimorph

than a high resistance. This fact can be turned to advantage in impulse-excitation: if

the external impedance is switched from ≈ 0 to optimal at an appropriate time during
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Figure 7. Input mechanical energy as a function of switching time, i.e. when τ is

stepped from 0.001 to 0.5. The other parameters were: σ = 0.4 and Γ = 0.1. In this

specific case, a gain of 12% is observed in the energy available for conversion. The

contact force g(t) is also shown (without vertical scale).

or after the impact, the energy generated may be increased. This is because a low

stiffness bimorph will receive more energy from the impact than a stiff one (the impact

is more inelastic). It is not the intention of this paper to explore this in detail, but to

prove the point the model was run with τ(t) = τ∞H(t − tsw) + 0.001 where H is the

Heaviside step-function, σ = 0.4,Γ = 0.1, τ∞ = 0.5, tsw ∈ [0, 4]. The input mechanical

energy (work done by the projectile) was calculated as:

W = k41

6σ∫
0

g(t) v(ξ0, t) dt

where v(ξ0, t) is the velocity of the point where the force g(t) is applied.

As predicted, the input energy is higher the longer the external resistance (the only

factor in τ assumed to change) is kept low; saturation is observed beyond the loss of

contact (figure 7). As τ also affects the ability of the external circuit to extract energy

from the bimorph, it remains to be investigated what switching time and what τ∞ are

best matched to give a maximum in energy output.

5. Conclusions

This paper has presented a dimensionless model for piezoelectric energy harvesters,

based on an analytical derivation from standard piezoelectricity and Euler-Bernoulli

beam theory. The dimensionless formulation permits the derivation of results widely

applicable, irrespective of the specific materials or geometric dimensions.

The model has been solved with a forcing function representing an impact

excitation, which is an increasingly common way to achieve frequency up-conversion,

and thence to improve the performance of the EH. Due to the dimensionless character

of the model, the results found have general applicability:
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• sharper impacts, in which the projectile’s momentum is transferred in a very short

time, yield higher energy generation. This conclusion is valid within the time-

scale investigated, whereas different results may be expected if the impact could be

extremely fast and excite much higher modes of vibration, as suggested by figure 6.

As such impacts may seriously damage the bimorph, they are of limited interest;

• the final energy generated depends only marginally on the coupling Γ. This is a

very important result as it implies that moderately piezoelectric materials may give

almost the same energy conversion as more active ones;

• from the energy generation point of view, the major effect of strong coupling (large

Γ) is on the time required to achieve the desired energy output. In other words,

the highest power outputs can only be achieved when Γ is large;

• combining the latter two points, it is noted that damping becomes more important

with small coupling, as the longer is the conversion the more energy will be

dissipated. This would be particularly important for polymer-based bimorphs, due

to the large internal damping expected. If this case is of interest, further analysis

should be done with higher values of damping than was used here;

• the projectile should impact the bimorph close to the free end so as to transfer the

maximum energy. The conversion efficiency may depend on the location of impact

(figure 6).

Some impulse-excited EHs will require the projectile to preserve a significant proportion

of its kinetic energy through the impact, for example to promptly travel to another

element where it receives further energy itself. Other EHs may perform best if in the

impact the projectile loses as much of its energy as possible. In the latter case, it may

be beneficial to initially set the external circuit to low impedance so that the bimorph

is more compliant and offers a more inelastic impact; thereafter, the circuit is switched

to an optimised impedance, to extract the electrical energy as quickly as possible. This

consideration should fit within a global strategy to optimise the impact, for which task

it may be useful to refer to [15].

As a general consideration, frequency up-conversion is useful when only a moderate

piezoelectric coupling is available, as in this case many vibrations are needed to complete

the conversion between input mechanical energy and output electrical energy. When

coupling is strong, on the other hand, conversion is quick and after a few periods there

is no mechanical energy left in the bimorph. In other words, if the application offers

sparse excitations, and in virtue of this it demands frequency up-conversion, then there

is no advantage in introducing a bimorph with high coupling. As this may well be

associated with exotic materials or geometries, it can be seen as a useless cost. All this

has a positive aspect: there are likely to be many applications where the cost of efficient

bimorphs would make piezoelectric EH economically infeasible. The results presented in

this paper show that frequency up-conversion with unsophisticated bimorphs could be a

viable solution in all these cases. The way to higher output power from impact-excited
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EHs seems to be paved of many medium quality bimorphs, rather than a few better

performing ones.
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